

ChessBrain II – A Hierarchical Infrastructure for Distributed
Inhomogeneous Speed-Critical Computation

Colin M. Frayn, Carlos Justiniano, Kevin Lew

Abstract—The ChessBrain project currently holds an official
Guinness World Record for the largest number of computers
used to play one single game of chess. In this paper, we cover
the latest developments in the ChessBrain project, which now
includes the use of a highly scalable, hierarchically distributed
communications model.

I. INTRODUCTION & BACKGROUND
HE ChessBrain project was initially created to
investigate the feasibility of massively distributed,

inhomogeneous, speed-critical computation via the Internet.
The game of chess lends itself extremely well to such an
experiment by virtue of the innately parallel nature of game
tree analysis, allowing many autonomous contributors to
concurrently and independently evaluate segments of the
game tree. With diminishing returns coming from increased
search speed, we believe that distributed computation is a
valuable avenue to pursue for all manner of substantial tree-
search problems.

 ChessBrain is among the class of applications which
leverage volunteered distributed computing resources to
address the need for considerable computing power. Earlier
projects include the distributed.net (Prime number search)
and the SETI@home project which is focused on the
distributed analysis of radio signals.

Unlike similar projects which are content to receive
processed results within days and weeks, ChessBrain
requires feedback in real-time due to the presence of an
actual time bound game. We believe that ChessBrain is the
first project of its kind to address many of the challenges
posed by stringent time limits in distributed calculations – a
nearly ubiquitous feature of game-playing situations.

In the two years since ChessBrain played its first match,

we have been working on a second generation framework
into which we can host the same chess-playing AI structure,
but which will enable us to make far better use of that same

AI and will permit efficient access to a far wider range of
contributors, including locally networked machines and
dedicated compute clusters.

Manuscript received December 17, 2005.
C. M. Frayn is with the Centre of Excellence for Computational

Intelligence and Applications (CERCIA), School of Computer Science,
University of Birmingham, UK. (e-mail: C.M.Frayn@cs.bham.ac.uk.)

C. Justiniano is a senior member of the Artificial Intelligence group at
Countrywide Financial Corporation (CFC) by day and an independent
researcher and open source contributor by night (e-mail:
cjus@chessbrain.net)

Kevin Lew is a software architect at CCH. In his spare time he builds
Beowulf Clusters. (e-mail: rawr@inorbit.com)

During the first demonstration match, the ChessBrain

central server received work units from 2,070 machines in
56 different countries. Far more machines attempted to
connect, but were unable to do so due to our reliance on a
single central server. Our primary goal for ChessBrain II
was to address this critical issue in a way that allowed for far
greater scalability and removed much of the communication
related processing overhead that was present in earlier
versions.

As a result, we chose a hierarchical model, which we

explain in detail in the following section. This model
recursively distributes the workload thus freeing the central
server from much of its prior time-consuming maintenance
and communications management tasks.

II. PARALLEL GAME TREE SEARCH

We included the basic algorithms for parallel game tree
search in our earlier papers[1,2,3], and they have been
covered in detail in the literature. The ChessBrain project’s
core distributed search uses the APHID algorithm[4]. It
implements an incremental, iterative deepening search,
firstly locally on the server and then, after a certain fixed
time, within the distribution loop. During this latter phase,
the top few ply of the search tree are analysed repeatedly
with new leaf nodes being distributed for analysis as soon as
they arise. Information received from the distributed
network is then incorporated into the search tree, with
branches immediately being extended or pruned as
necessary.

Leaf nodes are distributed to PeerNodes as work units.
These encode the current position to be analysed and the
depth to which it should be searched. Work units are
distributed to the connected PeerNodes on a request basis,
though they are also ranked in order of estimated complexity
using intelligent extrapolation from their recorded
complexity at previous, shallower depths. In this way, the
most complex work units can be distributed to the most
powerful PeerNodes. Work units that are estimated to be far
too complex to be searched within a reasonable time are
further subdivided by one ply, and the resulting, shallower
child nodes are distributed instead. This is illustrated in
figure 1.

T

Fig. 1: Distributed chess tree search

If a node in the parent tree returns a fail-high (beta-cut)
value from a PeerNode search, we then prune the remainder
of the work units from that branch. This indicates that the
position searched by the PeerNode proved very strong for
the opponent, and therefore that the parent position should
never have been allowed to arise. In this situation, we can
cease analysis of the parent position and return an
approximate upper limit for the score. PeerNodes working
on these work units receive an abort signal, and they return
immediately to retrieve a new, useful work unit.

III. CHESSBRAIN II

A. Motivation

The motivation behind ChessBrain II is to enable far greater
scalability, whilst also improving the overall efficiency
compared with the earlier version. Whilst ChessBrain I was
able to support well over 2,000 remote machines, the lessons
learned from the original design have enabled us to develop
an improved infrastructure, which is suitable for a diverse
range of applications.

B. Technical Configuration

ChessBrain II utilizes a custom server application, called
msgCourier, which enables the construction of a hierarchical
network topology that is designed to reduce network latency
through the use of clustering as outlined in figure 2. The
resulting topology introduces network hubs, the importance
of which to graph theory has also been well covered in
research superseding the random graph research of Erdos
and Renyi and in the social network research of Milgram. In
brief, well placed communications hubs help create small

world effects which radically improve the effectiveness of
networked communication. [5, 6].
The ChessBrain II system consists of three server
applications, a SuperNode, ClusterNode and PeerNode.

Component Purpose
SuperNode

Central server. Interfaces with the actual
game being played. Manages work unit
partitioning and distribution.

ClusterNode

Manages communities of local and
distributed PeerNode servers.

PeerNode

Compute node servers. Performs work
unit processing.

Table 1. Server Types

The central server no longer distributes work units

directly to the PeerNodes, as was the case with ChessBrain
I, instead work units are sent to an array of first-level
ClusterNodes, operated by trusted community members.
These ClusterNodes contain no chess-playing code and
behave as network hubs (relay points) through which the
complete set of work units can be passed.

Fig. 2: ChessBrain II configuration

Each ClusterNode contains a complete listing of all

PeerNodes connected to it, together with a profiling score to
determine the approximate CPU speed of the PeerNode,
exactly as in ChessBrain I. Each PeerNode connects to one
and only one ClusterNode

The ClusterNodes, having been allocated a selection of

individual work units by the SuperNode, then divide up
these work units as they see fit based on the profiling data

that they obtain from their own network of PeerNodes. The
primary considerations are that the work units are distributed
to sufficient machines to ensure a reliable reply within the
time required, plus to ensure that the work units perceived to
require a greater computation effort are allocated to those
PeerNodes deemed most fit to analyse them.

In subsequent versions, we intend to move some of the

chess logic from the SuperNode onto the ClusterNodes,
further reducing the communications overhead. Our
anticipation is that the SuperNode will divide up the initial
position into large tree chunks, and then distribute just these
positions to the ClusterNodes. The ClusterNodes will then
further subdivide the given positions, allocating the leaf
nodes to the attached PeerNodes as it sees fit, and
accumulating the returned results as and when they arrive.
The ClusterNodes will then return a single result to the
central SuperNode, instead of many.

C. ChessBrain II Communication Protocols

Early versions of ChessBrain relied on industry standard

XML data encoding first using XMLRPC, and later using
SOAP. The decision to use SOAP was driven by a desire
for interoperability with emerging web services. However,
the need to streamline communication has steered us toward
minimizing our use of XML in favour of economical string
based S-Expressions[7].

To further streamline communication we've implemented

a compact communication protocol similar to the Session
Initiation Protocol (SIP)[8] for use in LAN and cluster
environments where we favour the use of connectionless
UDP rather than stream-based TCP communication.

The ChessBrain I communication protocol consisted of

XML content which was first compressed using ZLib
compression and then encrypted using the AES Rijndael
cipher. Although each PeerNode was quickly able to
decrypt and decompress the payload content, the burden was
clearly on the SuperNode server where each message to and
from a PeerNode required encryption and compression
operations. The situation was compounded by the fact that
each PeerNode communication occurred directly with a
single central SuperNode server.

With ChessBrain II we’ve eliminated direct PeerNode

communication with the central SuperNode and introduced
the concept of batch jobs, which combine multiple jobs into
a single communication package. The reduction in
messaging reduces the impact to the TCP stack while the
grouping of jobs greatly improves the compression ratio.

D. Architecture Advantages
The most significant architectural change to ChessBrain
involves the introduction of network hubs called
ClusterNodes, as outlined in section IIIB.

ChessBrain I used a single SuperNode server to handle

the remote coordination of hundreds of machines. Each
dispatched job required a direct session involving the
exchange of multiple messages between the SuperNode and
its PeerNode clients. With ChessBrain II, jobs are
distributed from a central server at distributedchess.net to
remote ClusterNodes, which in turn manage local
communities of PeerNodes. Each ClusterNode receives a
batch of jobs, which it can directly dispatch to local
PeerNodes thereby eliminating the need for individual
PeerNode to communicate directly with the central server.
This is necessary to harness a compute cluster effectively.
Each ClusterNode collects completed jobs and batches them
for return shipment to the central SuperNode server. The
efficient use of ClusterNode hubs and job batching results in
a reduced load on the central server, efficient use of clusters,
reduced network lag, and improved fault tolerance.

We envision that ClusterNodes will largely be used by
individuals desiring to cluster local machines. Indeed
during the use of ChessBrain I we detected locally
networked machines containing five to eighty machines.
Most local networks in existence today support connection
speeds between 10 to 1000 MBit per second, with the lower
end of the spectrum devoted to wireless networks, and the
higher end devoted to corporate networks, research
networks and compute clusters. ChessBrain II is designed to
utilise cluster machines by taking full advantage of local
intranet network speeds and only using slower Internet
connections to communicate with the SuperNode when
necessary.

If we assume that there are roughly as many PeerNodes
connected to each ClusterNode as there are ClusterNodes,
then effectively the communications costs for each Cluster
node, and indeed the SuperNode itself, is reduced to its
square root. So, with total node count N, instead of one
single bottleneck of size N, we now have approximately
(sqrt(N)+1) bottlenecks, each of size sqrt(N). When
addressing scalability issues, this is a definite advantage,
allowing us to move from an effective node limit of
approximately 2,000 to around one million machines.

E. Architecture Drawbacks

It is only fair to consider the drawbacks of the above
architecture and to explain why it may not be suitable for
every gaming application.

Firstly, as with any distributed computation environment,

there is a substantial overhead introduced by remote
communication. Indeed, communication costs increase as
the number of available remote machines increases.
ChessBrain I involved a single server solution that was
overburdened as an unexpectedly large number of remote
machines became available. Communication overhead on

ChessBrain I reached approximately one minute per move
under peak conditions. However, with the experience gained
since that first exhibition match, and with the subsequent
redesign of ChessBrain I, we have reduced the overhead to
less than ten seconds per move.

The presence of communication overhead means that

shorter time scale games are not currently suitable for
distributed computation. However, games that favour a
higher quality of play over speed of play are likely to make
good use of distributed computation.

Anyone who has ever attempted to write a fully-
functioning alpha-beta pruning chess search algorithm
featuring a multitude of unsafe pruning algorithms such as
null-move, will immediately appreciate the complexity of
debugging a search anomaly produced from a network of
several thousand computers, each of which is running a
number of local tree searches and returning their results
asynchronously. Some of the complexities of such an
approach are covered in [9].

 Adding hierarchical distribution increases complexity,

and highlights the importance of considering how a
distributed application will be tested early in the design
phase. With ChessBrain II we’ve had to build specialized
testing applications in order to identify and correct serious
flaws which might have otherwise proceeded undetected.
Such a suite of testing tools is invaluable for a distributed
application of this size.

F. Comparison with alternative parallel implementations

Other approaches towards parallelising search problems
focus primarily on tightly-coupled compute clusters with
shared memory. The aim of this paper is not to offer a
thorough analysis of the advantages and drawbacks of
remotely distributed search versus supercomputer or
cluster-based search. The main advantages of this method
over that used by, for example, the Deep Blue project [10]
and the more recent Hydra project are as follows:

• Processing power – With many entirely separable
applications, parallelising the search is a simple way to
get extra processing power for very little extra
overhead. For chess, the parallelisation procedure is
highly inefficient when compared to serial search, but
we chose this application because of its inherent
difficulty, our own interest and its public image.

• Distributed memory – With many machines
contributing to the search, the total memory of the
system is increased massively. Though there is much
repetition and redundancy, this still partly overcomes
the extra practical barrier imposed by the finite size of
a transposition table in conventional search.

• Availability – the framework described in this paper is
applicable to a wide range of projects requiring

substantial computing power. Not everyone has access
to a supercomputer or a substantial Beowulf cluster.

• Costs – It’s easier to appeal to 10,000 people to freely
contribute resources than it is to convince one person
to fund a 10,000 node cluster.

Drawbacks include:

• Communication overheads – time is lost in
sending/receiving the results from PeerNodes.

• Loss of shared memory – In games such as chess, the
use of shared memory for a transposition table is
highly beneficial. Losing this (amongst other cases)
introduces many overheads into the search time [11]

• Lack of control – the project manager has only a very
limited control over whether or not the contributors
choose to participate on any one occasion.

• Debugging – This becomes horrendously complicated,
as explained above.

• Software support – The project managers must offer
support on installing and configuring the software on
remote machines.

• Vulnerability – The distributed network is vulnerable
to attacks from hackers, and must also ensure that
malicious PeerNode operators are unable to sabotage
the search results.

At the present time, we are not aware of any other effort
to evaluate game trees in a distributed style over the
internet.

G. Comparison with other Chess projects

We are often asked to compare ChessBrain with more
famous Chess machines such as Deep Blue and the more
recent Hydra project. A direct comparison is particularly
difficult as ChessBrain relies on considerably slower
communication and commodity hardware. In contrast, both
Deep Blue and Hydra are based on a hardware-assisted brute
force approach. A more reasonable comparison would be
between distributed chess applications running on GRIDs
and distributed clusters.

H. The need for MsgCourier

While considering architectural requirements for
ChessBrain II, we investigated a number of potential
frameworks including the Berkeley Open Infrastructure for
Network Computing (BOINC) project. BOINC is a
software application platform designed to simplify the
construction of public computing projects and is presently in
use by the SETI@home project, CERN’s Large Hadron
Collider project and other high-profile distributed computing
projects[12].

After extensive consideration we concluded that

ChessBrain's unique requirements necessitated the

construction of a new underlying server application
technology[13]. One of our requirements for ChessBrain II's
software is that it must be a completely self-contained
application that is free of external application dependencies.
In addition, our solution must be available for use on both
Microsoft Windows and Linux based servers, while
requiring near zero configuration. The rationale behind
these requirements is that ChessBrain II allows some of our
contributors to host ClusterNode servers. It is critically
important that our contributors feel comfortable with
installing and operating the project software. We found that
BOINC requires a greater level of system knowledge than
we're realistically able to impose on our contributors. Lastly,
BOINC was designed with a client and server methodology
in mind, while our emerging requirements for ChessBrain II
include Peer-to-Peer functionality.

Well over a year ago we began work on the Message
Courier (msgCourier) application server in support of
ChessBrain II. MsgCourier is designed to support speed
critical computation using efficient network communication
and enables clustering, which significantly improves overall
efficiency. Unlike other technologies, msgCourier is
designed to enable ad-hoc machine clusters and to leverage
existing Beowulf clusters.

MsgCourier is a hybrid server application that combines

message queuing, HTTP server and P2P features. When we
embarked on this approach there were few such commercial
server applications. Today, Microsoft has release SQL
Server 2005 which combines a SQL Engine, HTTP server
and messaging server features. The industry demands for
performance necessitates the consideration of hybrid
servers.

We chose to build msgCourier independently of

ChessBrain (and free of chess related functionality) in the
hopes that it would prove useful to other researchers.

The following were a few of our primary design
considerations:

• A hybrid application server, combining message
queuing and dispatching with support for store and
forward functionality.

• Multithreaded concurrent connection server design
able to support thousands of concurrent connections.

• High-speed message based communication using
TCP and UDP transport.

• Built-in P2P functionality for self-organization and
clustering, service adverting and subscribing.

• Ease of deployment with minimal configuration
requirements.

• Built-in security features which are comparable to the
use of SSL and or SSH.

The msgCourier project is under continued development.

We are keen to emphasize here that the relevance of the

ChessBrain project is not just to the specific field of
computer chess, but to any distributed computation project.
Hence, we believe that the msgCourier software is a
valuable contribution to all areas of computationally
intensive research. The direct application here demonstrates
that the framework is also flexible enough to operate within
gaming scenarios, where results are required on demand at
high speed and with high fidelity, often in highly
unpredictable search situations.

More information on the msgCourier project is available

at http://www.msgcourier.com

CONCLUSIONS : THE FUTURE OF DISTRIBUTED GAMING

Distributed computation offers the potential for deeper
game tree analysis for a variety of potential gaming
applications. In particular, it overcomes the restrictions
imposed by Moore’s law, producing substantial gains for
any game-playing code that is primarily computationally
limited. For games such as Go, the effective contribution is
reduced as the branching factor is so high that such games
are algorithmically limited rather than computationally
limited in most cases.

Speed-critical distributed computation also has many clear

applications within the financial sector where rapid
decisions must be made, often based on approximate or
inadequate data.

During the past decade we’ve seen high profile Man vs.

Machine exhibitions. We feel that the general public will
eventually lose interest in exhibitions where a single human
player competes against a machine which is virtually
indistinguishable from the common personal desktop
computer. Not since Deep Blue has any Man vs. Machine
event really captured the public’s imagination.

We feel strongly that the future of Man vs. Machine

competitions will migrate toward a format where a human
team competes against a distributed network. Such events
will take place over the Internet with distributed human
members collaborating remotely from their native countries.
This exhibition format will likely capture the public’s
imagination as it more closely resembles themes played out
in popular science fiction.

On the ChessBrain project we’ve learned the importance

of capturing the public’s imagination for without their
support massively distributed computation would not be
economically feasible[14]. Generally, a project is only as
good as the contributors that it is able to attract. This entire
field of research – that of attracting distributed computation
teams to a project – seems remarkably underdeveloped in
the literature, despite the fact that it has an arguably greater
effect on the success of any distributed project than any

degree of algorithmic sophistication. More work in this area
seems extremely important, though it lies firmly within the
realms of psychology and sociology rather than pure
computer science.

We’ve completed preliminary testing on small clusters
with the support of ChessBrain community members [15].
During the first quarter of 2006 we intend to release a major
update of our project software when we will begin large-
scale public testing of ChessBrain II. We expect ChessBrain
II to be fully operational by the second quarter of 2006.

We are actively preparing for a second demonstration
match between ChessBrain II and a leading international
chess grandmaster within the next 12 months. Anyone
wishing to contribute to this event is welcome to contact the
authors at the addresses supplied.

ACKNOWLEDGMENT
We would like to acknowledge the hundreds of

international contributors who have supported the
ChessBrain project over the past four years. In addition, and
by name, we would like to thank Cedric Griss and the
Distributed Computing Foundation; Kenneth Geisshirt and
the Danish Unix users Group; Peter Wilson; Gavin M. Roy
with EHPG Networks; and Y3K Secure Enterprise Software
Inc., whose outstanding support enabled us to establish a
world record and to further contribute to this emerging field.
Colin Frayn is currently supported by a grant from
Advantage West Midlands (UK).

REFERENCES
[1] Frayn, C.M. & Justiniano, C., “The ChessBrain Project – Massively

Distributed Inhomogeneous Speed-Critical Computation”,
Proceedings IC-SEC, Singapore, 2004

[2] Justiniano, C. & Frayn, C.M. “The ChessBrain Project: A Global
Effort To Build The World's Largest Chess SuperComputer”, 2003
ICGA Journal, Vol. 26, No. 2, 132-138

[3] Justiniano, C. “ChessBrain: A Linux-Based Distributed Computing
Experiment”, 2003 Linux Journal, September 2003

[4] Brockington, M. “Asynchronous Parallel Game-Tree Search”, 1997
PhD Thesis, University of Alberta, Dept. of Computer Science

[5] Barabasi, A-L. “Linked: The new Science of Networks”, 2002.
Cambridge, MA: Perseus

[6] Gladwell, M. “The Tipping Point”, 2000. Boston: Little and Company
[7] Rivest, R. L., “S-Expressions”., MIT Theory group,

http://theory.lcs.mit.edu/~rivest/sexp.txt
[8] Session Initiation Protocol (SIP) http://www.cs.columbia.edu/sip/
[9] Feldmann, R., Mysliwietz, P., Monien, B., “A Fully Distributed Chess

Program”, Advances in Computer Chess 6, 1991
[10] Campbell, M., Joseph Hoane Jr., A., Hsu, F., “Deep Blue”, Artificial

Intelligence 134 (1-2), 2002.
[11] Feldmann, R., Mysliwietz, P., Monien, B., “Studying overheads in

massively parallel MIN/MAX-tree evaluation”, Proc. 6th annual ACM
symposium on Parallel algorithms and architectures , 1994

[12] Berkeley Open Infrastructure for Network Computing (BOINC)
project: http://boinc.berkeley.edu/

[13] Justiniano, C., “Tapping the Matrix: Revisited”, BoF LinuxForum,
Copenhagen 2005

[14] Justiniano, C., “Tapping the Matrix”, 2004, O’Reilly Network
Technical Articles, 16th, 23rd April 2004.
http://www.oreillynet.com/pub/au/1812

[15] Lew, K., Justiniano, C., Frayn, C.M., “Early experiences with clusters
and compute farms in ChessBrain II”. BoF LinuxForum, Copenhagen
2005

	I. INTRODUCTION & BACKGROUND
	II. Parallel Game Tree Search
	III. ChessBrain II
	A. Motivation
	B. Technical Configuration
	C. ChessBrain II Communication Protocols
	D. Architecture Advantages
	E. Architecture Drawbacks
	F. Comparison with alternative parallel implementations
	G. Comparison with other Chess projects
	H. The need for MsgCourier

	Conclusions : The Future of Distributed Gaming

